Relias Media - Continuing Medical Education Publishing

The trusted source for

healthcare information and

CONTINUING EDUCATION.

  • Sign In
  • Sign Out
  • MyAHC
    • Home
      • Home
      • Newsletters
      • Blogs
      • Archives
      • CME/CE Map
      • Shop
    • Emergency
      • All Products
      • Publications
      • Study Guides
      • Live Webinars
      • On-Demand Webinars
      • Libraries
    • Hospital
      • All Products
      • Publications
      • Study Guides
      • Live Webinars
      • On-Demand Webinars
      • Libraries
    • Clinical
      • All Products
      • Publications
      • Study Guides
      • Live Webinars
      • On-Demand Webinars
    • All Access
      • Learn More
      • My Subscription
    • My Account
      • My Subscriptions
      • My Content
      • My Orders
      • My CME/CE
      • My Transcript
    Home » NIH Super Sleuths Track Down a Rare Human Pathogen

    NIH Super Sleuths Track Down a Rare Human Pathogen

    Cutting-edge molecular epidemiology

    March 1, 2019
    No Comments
    Reprints
    Facebook Twitter Linkedin Share Share

    Related Articles

    A Nosocomial Outbreak at the NIH Clinical Center From Sphingomonas koreensis, a Rare Human Pathogen

    P. knowlesi: A Newly Recognized Human Pathogen

    Related Products

    Streptococcus suis a Cause of Human Meningitis: Another Emerging Pig Pathogen | Single Article

    P. knowlesi: A Newly Recognized Human Pathogen | Single Article

    Ehrlichia ewingii in Missouri: A New Human Pathogen | Single Article

    An outbreak of a rare human pathogen — which was traced to the stagnant water in a newly constructed building a decade earlier — was solved by investigators at the National Institutes of Health (NIH) Clinical Center using a deep bank of isolates and cutting-edge molecular epidemiology.

    In 2016, NIH clinicians detected a cluster of infections in six stem-cell transplant patients caused by Sphingomonas koreensis.1 The bacteria are a rare cause of human infections, but looking back through the center’s large bank of isolates, they detected more infections, bringing the total to 12 patients since 2006. New construction in 2005 apparently allowed the bug to establish a reservoir in the disrupted water system.

    “We were amazed that the organism had been dwelling in the building for so long and had changed so little,” says Tara Palmore, MD, hospital epidemiologist at the NIH Clinical Center.

    Palmore and colleagues conducted whole-genome DNA sequencing on the clinical isolates, and cultured S. koreensis from the sinks and faucets in patient rooms and other areas.

    “The investigation showed that two isolates of S. koreensis obtained from the six patients identified in the 2016 cluster were unrelated, but four isolates shared more than 99.92% genetic similarity and were resistant to multiple antibiotic agents,” they reported. “Retrospective analysis of banked clinical isolates of [S. koreensis] … revealed the intermittent recovery of a clonal strain over the past decade.”

    Transmission Unknown

    Following the cluster of cases in 2016, investigators looked for transmission sources. Overall, 22 of 56 cultures of water samples from faucets (39%) contained S. koreensis. The culture-positive rate rose to 53% if the samples were from faucets in the rooms of patients infected with the pathogen.

    Investigators found one positive culture in a faucet directly linked to a patient, but the exact mode of transmission could not be determined for the cases, Palmore says.

    “Some of the patients who acquired the organism were in the ICU and not using sinks,” she says. “It could have been water on the hands of healthcare workers. It also could have been water droplets aerosolized from sinks. We don’t know, but it could have been any of the ways that other waterborne organisms can be transmitted to patients.”

    Although these were high-risk patients, three of the patients died. Moreover, the patient isolates and environmental samples were resistant to multiple antibiotics. That raises the question of how bacteria that are a rare source of human infection became so drug-resistant.

    “We did not find any genes that conferred resistance to antibiotics, so this wasn’t acquired drug resistance,” Palmore says. “This wasn’t drug resistance of an organism that was hanging around hospitals and being exposed to antibiotics. It was built in to the coding of the DNA of the organism — it was just naturally drug-resistant.”

    This phenomenon has been described before, perhaps most profoundly by investigators who found microbes in ancient, underground caves that were naturally resistant to antibiotics to which they could not possibly have been exposed.2

    Journey to the Past

    The NIH has a vast library of stored isolates, enabling investigators to look back in time and ultimately determine the origin of the reservoir.

    “It’s actually amazing that our microbiology lab has [so many] isolates banked,” she says. “The lab has been deep-freezing isolates for decades. We can go back and do this kind of research and clinical investigation.”

    Investigators also were surprised to discover that S. koreensis was even causing infections, and wanted to look back to see if prior cases had occurred.

    “This is not the type of organism that normally gets a lot of attention in hospitals,” Palmore says.

    “In fact, when I have presented this investigation at other hospitals, it really takes some convincing. I have to really go into the genomic data that we presented in the paper to get people to appreciate that this is something that they need to care about it.”

    Infection preventionists may understandably be focused on time-honored water bugs such as Legionella and Pseudomonas, but the findings underscore that other waterborne pathogens need to be on the radar, she says.

    “Another reason we went back and looked at frozen samples was because we knew that we had not always looked at Sphingomonas isolates to the species level,” she says.

    “By genomic sequencing, we were able to identify whether there were any matches.”

    Low Chlorine

    Low chlorine levels in the hot water system were identified as the prime cause of the buildup of S. koreensis in the water system, Palmore and colleagues found.

    “We found those low hot-water chlorine levels at the time we looked in 2016,” she says.

    “We corrected the chlorine levels and monitored those closely. We’ve not had another case in going on two and a half years — since October 2016.”

    Chlorine levels are now monitored at multiple sites in the hospital on an ongoing basis.

    “We also culture water and follow those cultures,” she says. “Our research is ongoing into ways to reduce risk to patients.”

    As IPs are well aware, in 2017 the Centers for Medicare & Medicaid Services released a memo mandating that “Medicare-certified healthcare facilities … have water management policies to reduce the risk of growth and spread of Legionella and other opportunistic pathogens in building water systems.”3

    While certainly complying with the directive, Palmore warns that the CMS memo does not specifically require monitoring water chlorine levels — which the NIH regards as critical after the outbreak.

    “It is important to pay particular attention to free chlorine concentrations,” she says.

    “That is the major measure that suppresses the growth of many types of bacteria in water.”

    Although many hospitals may not have such a deep store of isolates and genome sequencing technology, Palmore thinks other epidemiologists and IPs could have detected S. koreensis using common laboratory identification systems.

    “The question is whether they would have recognized the importance of what they found,” she says.

    “Whether they would have realized, if they found S. koreensis in a patient blood culture, that this is an organism they might need to be worried about.”

    REFERENCES

    1. Johnson RC, Deming C, Conlan S, et al. Investigation of a Cluster of Sphingomonas koreensis Infections. N Engl J Med 2018;379(26):2529-2539.
    2. Spellberg B, Bartlett JG, Gilbert DN. The Future of Antibiotics and Resistance. N Engl J Med 2013;368:299-302.
    3. CMS. Center for Clinical Standards and Quality/Survey & Certification Group. Requirement to Reduce Legionella Risk in Healthcare Facility Water Systems to Prevent Cases and Outbreaks of Legionnaires’ Disease (LD). Ref: S&C 17-30-ALL. June 02, 2017. Available at:
      http://go.cms.gov/2r3ue6B.

    Post a comment to this article

    Report Abusive Comment

    www.reliasmedia.com

    Hospital Infection Control & Prevention

    View PDF
    Hospital Infection Control & Prevention (Vol. 46, No. 3) - March 2019
    March 1, 2019

    Table Of Contents

    CDC Analysis Supports Mandated Drug Stewardship in Hospitals

    U.S. Caregiver Received Experimental Ebola Vaccine Post Exposure

    NIH Super Sleuths Track Down a Rare Human Pathogen

    Study Finds Only 12.8% of Outpatient Antibiotics Appropriate

    Improving Infection Prevention by Reforming IT, Electronic Health Records

    Are Stethoscopes a Vector for Transmission to Patients?

    Begin Test

    Buy this Issue/Course

    Financial Disclosure: Peer Reviewer Patrick Joseph, MD, reports that he is a consultant for Genomic Health, Siemens, and CareDx. Senior Writer Gary Evans, Editor Jesse Saffron, Editor Jill Drachenberg, Nurse Planner Patti Grant, RN, BSN, MS, CIC, and Editorial Group Manager Terrey L. Hatcher report no consultant, stockholder, speaker’s bureau, research, or other financial relationships with companies having ties to this field of study.

    Shop Now: Search Products

    • Subscription Publications
    • Books & Study Guides
    • Webinars
    • Group & Site
      Licenses
    • State CME/CE
      Requirements

    Webinars And Events

    View All Events

    Free Email Newsletters

    All Fields Required

    E-Newsletter Options
    • Accreditation Council for Continuing Medical Education
    • American Nurses Credentialing Center
    • American College of Emergency Physician
    • American Board of Internal Medicine: Maintenance of Certification
    • California Board of Registered Nursing
    • Commission for Case Manager Certification
    • American Academy of Pediatrics
    • American Osteopathic Association
    • Home
      • Home
      • Newsletters
      • Blogs
      • Archives
      • CME/CE Map
      • Shop
    • Emergency
      • All Products
      • Publications
      • Study Guides
      • Live Webinars
      • On-Demand Webinars
      • Libraries
    • Hospital
      • All Products
      • Publications
      • Study Guides
      • Live Webinars
      • On-Demand Webinars
      • Libraries
    • Clinical
      • All Products
      • Publications
      • Study Guides
      • Live Webinars
      • On-Demand Webinars
    • All Access
      • Learn More
      • My Subscription
    • My Account
      • My Subscriptions
      • My Content
      • My Orders
      • My CME/CE
      • My Transcript
    • Help
    • Search
    • About Us
    • Sign In
    • Register
    Relias Media - Continuing Medical Education Publishing

    The trusted source for

    healthcare information and

    CONTINUING EDUCATION.

    Customer Service

    customerservice@reliasmedia.com

    U.S. and Canada: 1-800-688-2421

    International +1-404-262-5476

    Accounts Receivable

    1-800-370-9210
    ReliasMedia_AR@reliasmedia.com

    Mailing Address

    • 1010 Sync St., Suite 100
      Morrisville, NC 27560-5468
      USA

    © 2019 Relias. All rights reserved.

    Privacy Policy  Terms of Use  Contact Us  Reprints  Group Sales

    For DSR inquiries or complaints, please reach out to Wes Vaux, Data Privacy Officer, DPO@relias.com

    Design, CMS, Hosting & Web Development :: ePublishing