Relias Media - Continuing Medical Education Publishing

The trusted source for

healthcare information and

CONTINUING EDUCATION.

  • Sign In
  • Sign Out
  • MyAHC
    • Home
      • Home
      • Newsletters
      • Blogs
      • Archives
      • CME/CE Map
      • Shop
    • Emergency
      • All Products
      • Publications
      • Study Guides
      • Webinars
      • Group Sales
    • Hospital
      • All Products
      • Publications
      • Study Guides
      • Webinars
      • Group Sales
    • Clinical
      • All Products
      • Publications
      • Study Guides
      • Webinars
      • Group Sales
    • All Access
      • My Subscription
      • Subscribe Now
    • My Account
      • My Subscriptions
      • My Content
      • My Orders
      • My CME/CE
      • My Transcript
    Home » EEG Reactivity for Prediction of Neurological Outcomes After Cardiac Arrest
    ABSTRACT & COMMENTARY

    EEG Reactivity for Prediction of Neurological Outcomes After Cardiac Arrest

    July 1, 2019
    No Comments
    Reprints
    Facebook Twitter Linkedin Share Share

    Related Articles

    EEG Reactivity for Prediction of Neurological Outcomes After Cardiac Arrest

    Prediction of Survival After Cardiac Arrest Using Pupillometry

    Continuous EEG During Therapeutic Hypothermia After Cardiac Arrest — Is it Useful?

    Related Products

    EEG Reactivity Testing in Comatose Patients After Severe Brain Injury

    Outcomes in Patients Treated with Therapeutic Hypothermia After In-hospital Cardiac Arrest

    Keywords

    cardiac

    neurological

    eeg-r

    By Peter B. Forgacs, MD

    Assistant Professor of Neuroscience and Neurology, Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medical College; Visiting Assistant Professor of Clinical Investigation, The Rockefeller University, New York

    Dr. Forgacs reports no financial relationships relevant to this field of study.

    SYNOPSIS: This prospective, multicenter cohort study aimed to determine the utility of electroencephalographic reactivity (EEG-R) testing in neurological prognostication of comatose patients after cardiac arrest. The authors found that EEG-R testing, by itself, is not sufficiently reliable to predict neurological outcomes after cardiac arrest.

    SOURCE: Admiraal MM, van Rootselaar AF, Homeijer J, et al. EEG reactivity as predictor of neurological outcome in postanoxic coma: A multicenter prospective cohort study. Ann Neurol 2019; May 24. doi: 10.1002/ana.25507. [Epub ahead of print].

    Neurological prognostication in patients who regain consciousness immediately after cardiac arrest remains challenging. Current standard clinical practice guidelines recommend a multimodal approach in assessment of neurological prognosis after cardiac arrest, including bedside examination (i.e., presence of brainstem reflexes), evidence of cortical (N20) response on somatosensory-evoked potential (SSEP) examination, laboratory markers of neuronal injury (i.e., levels of neuron specific enolase [NSE]), and imaging evidence (CT and/or MRI) of overwhelming neuronal injury. In addition, the value of many electroencephalographic (EEG) features increasingly is explored in assessment of comatose postcardiac arrest patients, particularly since continuous EEG monitoring became standard of care as part of various targeted temperature management (TTM) protocols. Among these features, lack of EEG-R is considered one such important indicator for poor outcome. In fact, all major U.S. and European guidelines include EEG-R as a prognostic marker after cardiac arrest. However, none of these guidelines, including the American Clinical Neurophysiology Society (ACNS) Standardized Critical Care EEG Terminology, provide specific descriptions of stimulus administration during testing or precise definitions for determining presence or absence of EEG-R. Furthermore, most studies assessing the relationship of EEG-R and clinical outcomes either have been relatively small or designed retrospectively with variable results. Consequently, the value of EEG-R in neurological prognostication after cardiac arrest remains unclear.

    In this large, multicenter, prospective cohort study, Admiraal et al used a rigorous standardized protocol for testing of EEG-R. A total of 160 patients were enrolled in three Dutch hospitals, and EEG-R was assessed twice daily while patients underwent continuous EEG monitoring. The protocol for EEG-R testing included a fixed set of auditory, visual, tactile, and noxious stimuli employed three times in a row at each evaluation. Three experienced EEG readers blinded to all clinical variables and patient outcomes independently assessed EEG-R, defined as a change in EEG amplitude or frequency at least twice in response to any of the stimuli. Increased muscle activity or stimulus-induced rhythmic or periodic discharges (SIRPIDS) were not considered as EEG-R. If the raters disagreed, a majority vote was used to decide the presence of EEG-R. As a secondary analysis, EEG-R also was re-evaluated in a consensus meeting in cases without unanimous decision. Thresholds for accurate prediction of good or poor outcomes were predefined based on the presence or absence of EEG-R, respectively, both using EEG-R alone or added to a multimodal prediction algorithm. Multimodal assessments included brainstem reflexes, N20 response of SSEP at 72 hours, and graded EEG categories based on background abnormalities in addition to EEG-R.

    The main findings of the study showed that the absence of EEG-R predicted poor outcome with a specificity of 82% (below the predefined > 95%) and a sensitivity of 73%, while the presence of EEG-R predicted good outcome with a specificity of 73% (below the predefined > 80%) and a sensitivity of 82%. When EEG-R was added to a multimodal model, specificity of poor outcome prediction increased only marginally (from 98% to 99%), and specificity of good outcome prediction increased moderately (from 70% to 89%). Notably, while inter-rater reliability was relatively good, there was poor agreement between the majority vote vs. the consensus meeting (ICC of 0.40). Thus, the authors concluded that EEG-R testing alone is not sufficiently reliable for neurological outcome prediction after cardiac arrest. In addition, EEG-R has no substantial added value to multimodal assessments for poor outcome prediction, but it may add value to the prediction of good outcomes.

    COMMENTARY

    This is the first, prospectively designed, large, multicenter study assessing the value of EEG-R in neurological prognostication after cardiac arrest. Even though EEG-R is recommended by practice guidelines as an appropriate indicator for outcomes in patients who remain comatose after severe anoxic brain injury, there have been no previous studies of this scale assessing its prognostic value using a standardized, prospectively designed protocol. The results of this study suggest that even using a carefully executed protocol with a systematic approach, EEG-R is not sufficiently reliable to predict neurological outcomes in post-cardiac arrest patients.

    Major efforts are devoted to find early but accurate tools for assessing neurological recovery after cardiac arrest. Recent advancements in acute medical care and novel therapeutic interventions, such as various targeted temperature protocols (including therapeutic hypothermia), have led to improved survival and better neurological outcomes after severe anoxic brain injuries. Nevertheless, in current clinical practice, withdrawal of life-sustaining therapy (WLST) decisions continue to drive mortality in patients who do not regain consciousness readily after cardiac arrest. Therefore, the results of most studies assessing prognosis carry the risk that self-fulfilling prophecies may affect the outcomes and limit the interpretation of results. While the ratio of WLST was relatively low and EEG-R findings were not used in clinical decision-making, the results should be interpreted with caution. This study underscores the immense continued need for additional studies to develop highly precise and reproducible clinical or diagnostic assessments for accurate early neurological prognostication of comatose post-cardiac arrest patients.

    Post a comment to this article

    Report Abusive Comment

    www.reliasmedia.com

    Neurology Alert

    View PDF
    Neurology Alert (Vol. 38, No. 11) - July 2019
    July 1, 2019

    Table Of Contents

    Episodic Vertigo? Consider and Treat as Vestibular Migraine

    Clinical Features of Subdural Fluid Collections With Intracranial Hypotension

    Essential Tremor and Dystonic Tremor: Similar Appearance but Different Cerebral Networks

    Statin Use Moderately Reduces Dementia Risk After Concussions in Older Individuals

    EEG Reactivity for Prediction of Neurological Outcomes After Cardiac Arrest

    Help Us Help You

    Begin Test

    Buy this Issue/Course

    Financial Disclosure: Neurology Alert’s Editor in Chief Matthew Fink, MD; Peer Reviewer M. Flint Beal, MD; Editorial Group Manager Leslie Coplin; Editor Jonathan Springston; and Accreditations Manager Amy M. Johnson, MSN, RN, CPN, report no financial relationships relevant to this field of study.

    Shop Now: Search Products

    • Subscription Publications
    • Books & Study Guides
    • Webinars
    • Group & Site
      Licenses
    • State CME/CE
      Requirements

    Webinars And Events

    View All Events
    • Home
      • Home
      • Newsletters
      • Blogs
      • Archives
      • CME/CE Map
      • Shop
    • Emergency
      • All Products
      • Publications
      • Study Guides
      • Webinars
      • Group Sales
    • Hospital
      • All Products
      • Publications
      • Study Guides
      • Webinars
      • Group Sales
    • Clinical
      • All Products
      • Publications
      • Study Guides
      • Webinars
      • Group Sales
    • All Access
      • My Subscription
      • Subscribe Now
    • My Account
      • My Subscriptions
      • My Content
      • My Orders
      • My CME/CE
      • My Transcript
    • Help
    • Search
    • About Us
    • Sign In
    • Register
    Relias Media - Continuing Medical Education Publishing

    The trusted source for

    healthcare information and

    CONTINUING EDUCATION.

    Customer Service

    customerservice@reliasmedia.com

    U.S. and Canada: 1-800-688-2421 x 2

    International +1-404-262-5476 x 2

    Accounts Receivable

    1-800-688-2421 x 3
    ReliasMedia_AR@reliasmedia.com

    Sales

    1-800-688-2421 x 1

    Mailing Address

    • 1010 Sync St., Suite 100
      Morrisville, NC 27560-5468
      USA

    © 2022 Relias. All rights reserved.

    Do Not Sell My Personal Information  Privacy Policy  Terms of Use  Contact Us  Reprints  Group Sales

    For DSR inquiries or complaints, please reach out to Wes Vaux, Data Privacy Officer, DPO@relias.com

    Design, CMS, Hosting & Web Development :: ePublishing